ISO 13849 Analysis — Part 1: Start with Risk Assessment

This entry is part 1 of 6 in the series How to do a 13849-1 analysis

I often get questions from clients about how to get started on Functional Safety using ISO 13849. This article is the first in a series that will walk you through the basics of using ISO 13849. Keep in mind that you will need to hold a copy of the 3rd edition of ISO 13849-1 [1] and the 2nd edition of ISO 13849-2 [2] to use as you go along. There are other standards which you may also find useful, and I have included them in the Reference section at the end of the article. Each post has a Reference List. I will publish a complete reference list for the series with the last post.

Where to start?

So you have just learned that you need to do an ISO 13849 functional safety analysis. You have the two parts of the standard, and you have skimmed them, but you are feeling a bit overwhelmed and unsure of where to start. By the end of this article, you should be feeling more confident about how to get this job done.

Step 1 – Risk Assessment

For the purpose of this article, I am going to assume that you have a risk assessment for the machinery, and you have a copy for reference. If you do not have a risk assessment, stop here and get that done. There are several good references for that, including ISO 12100 [3], CSA Z432 [4], and ANSI B11.TR3 [5]. You can also have a look at my series on Risk Assessment.

The risk assessment should identify which risks require mitigation using the control system, e.g., use of an interlocked gate, a light curtain, a two-hand control, an enabling device, etc.See the MS101 glossary for detailed definitions. Each of these becomes a safety function. Each safety function requires a safety requirements specification (SRS), which I will describe in more detail a bit later.

Safety Functions

The 3rd edition of ISO 13849 [1] provides two tables that give some examples of safety function characteristics [1, Table 8] and parameters [1, Table 9] and also provides references to corresponding standards that will help you to define the necessary parameters. These tables should not be considered to be exhaustive – there is no way to list every possible safety function in a table like this. The tables will give you some good ideas about what you are looking for in machine control functions that will make them safety functions.

While you are identifying risk reduction measures that will use the control system for mitigation, don’t forget that complementary protective measures like emergency stop, enabling devices, etc. all need to be included. Some of these functions may have minimum requirements set by Type B2 standards, like ISO 13850 [6] for emergency stop which sets the minimum performance level for this function at PLc.

Selecting the Required Performance Level

ISO 13849-1:2015 provides a graphical means for selecting the minimum Performance Level (PL) required for the safety function based on the risk assessment. A word of caution here: you may feel like you are re-assessing the risk using this tool because it does use risk parameters (severity, frequency/duration of exposure and possibility to avoid/limit harm) to determine the PL. Risk assessment This tool is not a risk assessment tool, and using it that way is a fundamental mistake. Its output is in terms of performance level, which is failure rate per hour of operation. For example, it is entirely incorrect to say, “This machine has a risk level of PLc” since we define PLs in terms of probable failure rate per hour.

ISO 13849-1 graphical selection tool for determining PLr requirement for a safety function
Graphical Performance Level Selection Tool [1]
Once you have assigned a required Performance Level (PLr) to each safety function, you can move on to the next step: Developing the Safety Requirements Specification.

Book List

Here are some books that I think you may find helpful on this journey:

[0]     B. Main, Risk Assessment: Basics and Benchmarks, 1st ed. Ann Arbor, MI USA: DSE, 2004.

[0.1]  D. Smith and K. Simpson, Safety critical systems handbook. Amsterdam: Elsevier/Butterworth-Heinemann, 2011.

[0.2]  Electromagnetic Compatibility for Functional Safety, 1st ed. Stevenage, UK: The Institution of Engineering and Technology, 2008.

[0.3]  Overview of techniques and measures related to EMC for Functional Safety, 1st ed. Stevenage, UK: Overview of techniques and measures related to EMC for Functional Safety, 2013.

References


[1]     Safety of machinery — Safety-related parts of control systems — Part 1: General principles for design. 3rd Edition. ISO Standard 13849-1. 2015.

[2]     Safety of machinery — Safety-related parts of control systems — Part 2: Validation. 2nd Edition. ISO Standard 13849-2. 2012.

[3]      Safety of machinery — General principles for design — Risk assessment and risk reduction. ISO Standard 12100. 2010.

[4]     Safeguarding of Machinery. CSA Standard Z432. 2004.

[5]     Risk Assessment and Risk Reduction- A Guideline to Estimate, Evaluate and Reduce Risks Associated with Machine Tools. ANSI Technical Report B11.TR3. 2000.

[6]    Safety of machinery — Emergency stop function — Principles for design. ISO Standard 13850. 2015.

Series NavigationISO 13849 Analysis — Part 2: Safety Requirement Specification

Author: Doug Nix

+DougNix is Managing Director and Principal Consultant at Compliance InSight Consulting, Inc. (http://www.complianceinsight.ca) in Kitchener, Ontario, and is Lead Author and Managing Editor of the Machinery Safety 101 blog.

Doug's work includes teaching machinery risk assessment techniques privately and through Conestoga College Institute of Technology and Advanced Learning in Kitchener, Ontario, as well as providing technical services and training programs to clients related to risk assessment, industrial machinery safety, safety-related control system integration and reliability, laser safety and regulatory conformity.

Follow me on Academia.edu//a.academia-assets.com/javascripts/social.js