CSA Z432 Safeguarding of Machinery – 3rd Edition

If you build machinery for the Canadian market, or if you modify equipment in Canadian workplaces, you will be familiar with CSA Z432, Safeguarding of Machinery. This standard has been around since 1992, with the last major revision published in 2004. CSA has reconvened the Technical Committee responsible for this important standard to revise the document to reflect the current practices in the machinery market, and to bring in new ideas that are developing internationally that affect what Canadian machine builders are doing.

If you have interest in this standard and would like to have your thoughts and concerns communicated to the Technical Committee, please feel free to contact me with your suggestions. Work starts on 28-Jan-14. Your input is welcomed!

Why YOU need a Certification Strategy

How compliance efforts go wrong

Clients call when they have problems. They sent some product to a certification body, some tests were done and the product failed. Now what? Usually the delivery date for the certified product is approaching quickly, and no time is available to react. Delivery is delayed and the customer is upset. The business may even be lost.

This process goes wrong for a number of reasons:

  1. The end goal for the certification and the intermediate requirements were not considered
  2. The certification body chose the standard, and the manufacturer had no idea what the standard required
  3. The samples were not carefully prepared for the certification body
  4. Information was missing or partially missing

Certification Motivation

What motivates a manufacturer to certify a product? The decision to certify comes about for a variety of reasons, including:

  1. Legal requirement for the market
  2. Customer request
  3. Liability limitation
  4. Marketing advantage over competitor’s offerings

I’ve talked about the differences between CE Marking and traditional Certification processes in a number of articles, including this one recently, so I won’t repeat myself here. In Canada, Federal [1, 125(m)(iii)] and Provincial law [2, 113] requires anyone selling an electrical product to ensure that it bears an electrical safety mark, and this is supported in the Canadian Electrical Code [3, 2-024]. This requirement is often overlooked in the industrial / commercial market where post-installation equipment inspection, called “Field Evaluation”, is common.

In the US, each State has a slightly different approach, so you will need to check out the requirements in the states where your product is sold so that you can ensure compliance with the local requirements. From a workplace perspective, the US OSHA requires that all electrical products used in the workplace bear a mark from a Nationally Recognized Testing Laboratory (NRTL) [5].

Certifying your product provides some degree of liability limitation, in that it shows that you met the minimum legal requirements for your marketplace. To really limit your liability effectively, you will need to do more than just meet the minimum requirements, and you will need documentation of everything done to meet or exceed those requirements.

If you offer certified products in a market where this is uncommon, you have a marketing advantage as long as your customers understand the advantages certified product brings. If certification is rare in your markets, you may need to undertake some educational marketing to help customers “get it”.

Another key point needs to be considered: Product volume. Certification costs money and takes time. If you are selling less than 200 units per year of a given product in your line, certification for that product is unlikely to be feasible. For product volumes from one to 200 units per year, Field Evaluation provides a much more time and cost effective way to get your product marked.

The diagram shows the general process flow for this activity. If you are choosing to use Field Evaluation instead of Certification, substitute “Field Evaluation” wherever you see “Certification” in the diagram.

Flow chart showing certification process flow.
Certification Process Flow

Selecting standards

Selecting the “right” standard for your product can be a challenge, especially in the industrial market where products are often highly specialized, “one-off” products. In many of these cases, no standard that specifically covers the product may exist. For relatively simple products, or for products that are very common, like TV’s, computers, and audio-video equipment, there are “Product Family” standards that specifically cover these types products.

Not every standard is a certification standard. Most of the certification standards are focused on electrical and fire safety. The concerns are the prevention of electrical shock, arc flash, and fire. Certification standards will typically include specific tests that must be passed to show compliance with the requirements. Design standards, on the other hand, will provide general performance requirements and sometimes prescriptive feature requirements, but no test requirements. This is typical in the industrial machinery sector where standards like CSA Z432 [6] and the ANSI B11 family [7] of standards apply. In these cases, you may be able to have the product certified for electrical safety, but not for machinery safety. This does not eliminate corporate liability for the machinery hazards, requiring manufacturers to be knowledgeable and diligent in applying design standards.

Developing a Certification Strategy

To develop a sound strategy, I recommend a “bottom-up” approach. To apply this idea, start with the bill of materials for the product. Look first at the purchased products: How many of these items are either already certified by their manufacturer? All of the certified items can be eliminated from further consideration for the moment. Next, consider the purchased but un-certified products. Contact all of your suppliers to determine which of these products can be purchased certified, and adjust the bill of materials to reflect the part numbers for the certified versions.

Now, the harder part. All of the remaining items on the bill of materials need to be looked at for certification. Anything that cannot or need not be certified, e.g., nuts and bolts, other mechanical parts that are not pressure bearing, can be excluded from consideration. You now have a short list of uncertified components that require certification.

For each item on the short list, research the standards available. The Scope of the standards will help guide you regarding their applicability. Once you have a matched list of components and standards, you can extend that research to include the top level product.

Now you have the beginning of a compliance strategy. The next piece of the puzzle involves the internal evaluation of each component against the standards chosen. This give you the ability to revise your thinking, either of the standard you chose or of the design and construction of the component. Making good choices at this stage to either correct issues found in the design or construction of the component, or in the selection of the standard, can save you huge amounts of time and effort once the certification body gets involved.

Once the components have successfully passed the internal “pre-compliance” evaluation, you can get the certification body involved, and start the formal compliance process for each component. As this part of the process progresses, the certification body may have additional questions or requests for information. To reduce these in-process questions, make sure that each component is clearly identified, that you have unique part numbers for each part, and that you have provided information on the materials used in the construction of the component, as well as detailed engineering drawings.

As the component certification work progresses, you can start on the top level product certification work. The top level product needs to go through the same sort of internal pre-compliance process as the components so that you can be as certain as possible that the product will meet the requirements when it gets to the certification lab.

Preparation of the data package and the sample(s) of the top-level product that will be submitted must be done carefully. Construction of the samples must match the manufacturing drawings and instructions as closely as possible. Once everything is ready, the samples can be submitted for evaluation.

Working with your Certifier

Dealing with a Certification Body can be very challenging. Much of the experience will be based on the project engineer that is responsible for your product’s evaluation. It’s important to set up a good relationship with this person at the beginning, because once problems start to crop up in the lab you will need to be able to talk to this person. Making sure that you have the “right” standards selected for your product is really important, and the project engineer must agree with you. They can refuse to certify a product if they feel that the standard chosen is incorrect, and since they have the final word, there is no arguing with them. An open discussion at the beginning of the project to discuss the standards selected is a good place to start. If your ideas and theirs deviate in a big way, you may have to compromise on their selection, or worse, stop the project and review the problems encountered.

Once the product is certified, the Certification Body will conduct regular audits on the manufacturing facility(ies) to make sure that the production testing is being done, production records are kept, and that the QA programs are ensuring that only good product leaves the plant.

An important part of the QA process is the Customer Complaints Program. Manufacturers must have a program in place to record customer complaints, and to respond to those complaints. A decision tree that helps customer service representatives differentiate between safety-related and non-safety related complaints should be developed. Safety related complaints should result in engineering review of the problems and determinations about the cause of the problems. If these are related to manufacturing or design issues, and especially if these are related to compliance with the requirements of the certification standard, a recall of the product may be needed. If this is the case, get the Certifier involved as soon as possible. Failure to act, and failure to inform the certifier can result in the certification being revoked.


[1]     Canada Labour Code, [online]. Available: http://canlii.ca/t/522fd. Accessed: 2014-01-27.

[2]     Ontario Electricity Act – Marking requirements Avaialble:Ontario Electricity Act. Accessed: 2014-01-27.

[3]     Canadian Electrical Code, CSA C22.1. 2012.

[4]     National Electrical Code, NFPA 70. 2014.

[5]     Occupational Safety and Health Standards, 1910 Subpart S, Electrical, Installatin and Use. 29 CFR 1910.303(b)(2), [online]. Available: https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=9880. Accessed: 2014-01-27.

[6]     Safeguarding of Machinery. CSA Z432. 2004.

[7]     Safety of Machines. B11.org, [online]. Available: http://b11standards.org/standards/. Accessed: 2014-01-27.

The Third Level of the Hierarchy: Information for Use

This entry is part 3 of 3 in the series Hierarchy of Controls

I’ve written about the Hierarchy of Controls in past posts, but I’ve focused on the ‘engineering’ side of the control equation: Physical changes to machine design to eliminate hazards, and mechanical or electrical control systems that can reduce risk.

The first two levels of the Hierarchy, Elimination/Substitution and Engineering Controls, are typically more challenging to apply in most people’s minds, because expert knowledge is required. These levels are also more effective in controlling risk than the subsequent levels.

The Third Level

iStock_000009386795Small - Photo of Instruction manualThe third level of the Hierarchy is ‘Information for Use’, sometimes abbreviated as ‘IFU.’ This level is deceptively simple, and is frequently the level people want to jump to when the other controls seem too difficult to implement. Done well, information for use can make a significant contribution to risk control. Unfortunately, it’s done poorly or not at all more often than it’s done well.

Information for use includes:

  • Instructions and Manuals;
  • Operator Device tags and Legend Plates;
  • HMI screens;
  • Hazard Warning signs and labels;
  • Training Materials (text, video, audio) and Training (face-to-face, webinars, self-directed);
  • Sales and marketing materials.

Information for use is needed in all the stages of the product life cycle: Transportation, Installation, Commissioning, Use, Maintenance, Service, Decommissioning and Disposal [1]. At each stage in the life cycle, the content of the information and the presentation may be different. In every stage it can make a significant contribution to risk reduction by communicating the safe approach to the tasks in that stage, and the risks related to those tasks. The information should include the intended use and the foreseeable misuses of the product. This is a legal requirement in the EU [2], and is a best-practice in North America.

In this article I’m going to focus on instruction manuals. If you’re interested in Hazard Warnings, including signs, labels, and integration into manuals and instructions, watch for a future post on this topic.

Legal requirements and standards

In the European Union, the legal obligation to provide information with a product is enshrined in law [2].
No North American jurisdictions make an explicit requirement for instructions or information for use in law, but many product specific standards include requirements for the content of manuals.

CSA Z432 [3] outlines requirements for content in Clause 17, and in EN 60204-1 [7]. IEC 62079 [4], provides guidance on the design and presentation of instructions. ANSI Z535.6 [5], provides specific instructions on inclusion of hazard warnings in manuals and instructions.

Training requirements are also discussed in CSA Z432 [3], Clause 18.

5% Discount on ISO and IEC Standards with code: CC2011

In the USA, providing information for use with a product is considered to be sound ‘due diligence’, however, providing information on residual risk is often seen by liability lawyers as dangerous, since manufacturers are providing information, in writing, that their product is not ‘perfectly safe.’ If you’ve read anything I’ve written on risk assessment, you’ll know that there is no such state as ‘perfectly safe.’ If a hazard exists, a potential for harm exists, a probability can be assessed and thus risk exists, however remote that risk may be. I think that this argument by some liability lawyers is fatuous at best.

Kenneth Ross, one of the leading product liability lawyers in the USA, discusses the requirements for warnings and instructions in an article published in 2007 [6]. In the article, he explains the US requirements:

“Product sellers must provide “reasonable warnings and instructions” about their products’ risks. The law differentiates warnings and instructions as follows:

“Warnings alert users and consumers to the existence and nature of product risks so that they can prevent harm either by appropriate conduct during use or consumption or by choosing not to use or consume.”

Instructions “inform persons how to use and consume products safely.”

A court has held that warnings, standing alone, may have no practical relevance without instructions and that instructions without warnings may not be adequate.

Therefore, when the law talks about the “duty to warn,” it includes warnings on products in the form of warning labels; safety information in instructions; instructions that affirmatively describe how to use a product safely; and safety information in other means of communication such as videos, advertising, catalogs and websites.

The law says that a manufacturer has a duty to warn where: (1) the product is dangerous; (2) the danger is or should be known by the manufacturer; (3) the danger is present when the product is used in the usual and expected manner; and (4) the danger is not obvious or well known to the user.”

Read Mr. Ross’ latest article on warnings.

This practical and sensible approach is very similar to that in the EU. Note the requirement that “instructions that affirmatively describe how to use a product safely.” The  old list of “don’ts” doesn’t cut it – you must tell your user how to use the product in an affirmative way.

Second Best

So why is it that so many manufacturers settle for manuals that are barely ‘second best’? In many companies, the documentation function is:

  • Not seen to add value to the product;
  • not understood to have legal import in limiting product liability;
  • given little effort.

The perception seems to be that manuals are produced primarily to fill filing cabinets and that customers don’t use the information provided. This leads to manuals that are written after-the-fact by engineers, or worse, the role of ‘technical writer’ is seen to be an entry level position often filled by interns or co-op students.

End-user training is frequently given even less thought than the manuals. When designed together, the manual will support the training program, and the trainers can use the manual as one of the primary training tools. This provides continuity, and ensures that the training process is properly documented.

iStock_000012657812Small - Techncial ManualMy experience is that few engineers are excellent writers. There are some, no doubt. Writing manuals takes a sound understanding of educational theory, including an understanding of the audience to whom the material is directed. The level of technical sophistication required for a simple household product is completely different from that required for the technical support manual for an industrial welding laser.
The engineers designing and integrating an industrial system are often too close to the design of the product to be able to write effectively to the target audience. Assumptions about the level of education that the user will have are often incorrect, and key steps may be skipped because they are assumed to be ‘common knowledge.’

Quality documentation is also a customer service issue. Products that are well documented require less customer service support, and when customers do need support, they are generally more satisfied with the result.

New Delivery Methods

The delivery methods for technical documents have changed considerably in recent years. Large, ring-bound paper manuals are being displaced by on-line, interactive documentation that can be accessed at the user interface. The use of PDF-format manuals has jumped, and this brings in the ability to link error messages generated by the control system to the sections of the manual that related to that aspect of the system. Video and animations can be added that provide at-a-glance understanding of the operation of the machinery. WiFi networks in industrial facilities, along with the acceptance of mobile pad-computing devices like the Apple iPad, mean users can have the instructions where they need them, and technicians and service personnel can take the manual with them to the area where a problem exists, and can use the documents even in very low-light conditions.

Finding technical writing resources can be a challenge, particularly if you are looking to move away from paper to electronic documentation. The standards mentioned in this article are a good place to start.
Documentation can range from writing through technical illustrations, animation and video production. Finding individuals who can provide you with professional services in these areas in a timely way and at a reasonable price is not an easy task. If you need assistance ranging from a few questions that need answers to hiring a technical writer, Compliance InSight Consulting can help. Contact me for more information!

Are your product manuals as good as they could be? What kinds of challenges have you had with getting them written, or used? Add your comments below!


5% Discount on ISO and IEC Standards with code: CC2011

[1]    “Safety of machinery – General principles for design – Risk assessment and risk reduction”, ISO Standard 12100, 2010

[2]    “DIRECTIVE 2006/42/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 17 May 2006 on machinery, and amending Directive 95/16/EC”, Annex 1, Clause 1.7, European Commission, 2006.

[3]    “Safeguarding of Machinery”, CSA Standard Z432, Canadian Standards Association, 2004.

[4]    “Preparation of instructions – Structuring, content and presentation”, IEC Standard 62079, International Electrotechnical Commission, 2001.

[5]    “American National Standard For Product Safety Information in Product Manuals, Instructions, and Other Collateral Materials”, ANSI Standard Z535.6, American National Standards Institute, 2006.

[6]    K. Ross. “Danger! The Legal Duty to Warn and Instruct”, Risk Management Magazine, [web] 2007, Available: No longer available.

[7]      “Safety of machinery — Electrical equipment of machines — Part 1: General requirements”, CENELEC Standard EN 60204-1, CENELEC, 2009.