CSA Z432 Safeguarding of Machinery — 3rd Edition

If you build machin­ery for the Cana­di­an mar­ket, or if you mod­i­fy equip­ment in Cana­di­an work­places, you will be famil­iar with CSA Z432, Safe­guard­ing of Machin­ery. This stan­dard has been around since 1992, with the last major revi­sion pub­lished in 2004. CSA has recon­vened the Tech­ni­cal Com­mit­tee respon­si­ble for this impor­tant stan­dard to revise the doc­u­ment to reflect the cur­rent prac­tices in the machin­ery mar­ket, and to bring in new ideas that are devel­op­ing inter­na­tion­al­ly that affect what Cana­di­an machine builders are doing.

If you have inter­est in this stan­dard and would like to have your thoughts and con­cerns com­mu­ni­cat­ed to the Tech­ni­cal Com­mit­tee, please feel free to con­tact me with your sug­ges­tions. Work starts on 28-Jan-14. Your input is wel­comed!

Interlocking Devices: The Good, The Bad and the Ugly

This entry is part 1 of 3 in the series Guards and Guard­ing

Note: A short­er ver­sion of this arti­cle was pub­lished in the May-2012 edi­tion of  Man­u­fac­tur­ing Automa­tion Mag­a­zine.

When design­ing safe­guard­ing sys­tems for machines, one of the basic build­ing blocks is the mov­able guard. Mov­able guards can be doors, pan­els, gates or oth­er phys­i­cal bar­ri­ers that can be opened with­out using tools. Every one of these guards needs to be inter­locked with the machine con­trol sys­tem so that the haz­ards cov­ered by the guards will be effec­tive­ly con­trolled when the guard is opened.

There are a num­ber of impor­tant aspects to the design of mov­able guards. This arti­cle will focus on the selec­tion of inter­lock­ing devices that are used with mov­able guards.

The Hierarchy of Controls

The Hierarchy of Controls as an inverted pyrimid.
Fig­ure 1 — The Hier­ar­chy of Con­trols

This arti­cle assumes that a risk assess­ment has been done as part of the design process. If you haven’t done a risk assess­ment first, start there, and then come back to this point in the process. You can find more  infor­ma­tion on risk assess­ment meth­ods in this post from 31-Jan-11. ISO 12100 [1] can also be used for guid­ance in this area.

The hier­ar­chy of con­trols describes lev­els of con­trols that a machine design­er can use to con­trol the assessed risks. The hier­ar­chy is defined in [1]. Design­ers are required to apply every lev­el of the hier­ar­chy in order, start­ing at the top. Each lev­el is applied until the avail­able mea­sures are exhaust­ed, or can­not be applied with­out destroy­ing the pur­pose of the machine, allow­ing the design­er to move to the next low­er lev­el.

Engi­neer­ing con­trols are sub­di­vid­ed into a num­ber of dif­fer­ent sub-groups. Only mov­able guards are required to have inter­locks. There are a num­ber of sim­i­lar types of guards that can be mis­tak­en for mov­able guards, so let’s take a minute to look at a few impor­tant def­i­n­i­tions.

Table 1 — Def­i­n­i­tions

Inter­na­tion­al [1] Cana­di­an [2] USA [10]
3.27 guard phys­i­cal bar­ri­er, designed as part of the machine to pro­vide pro­tec­tion.NOTEA guard may act either alone, in which case it is only effec­tive when “closed” (for a mov­able guard) or “secure­ly held in place” (for a fixed guard), or  in con­junc­tion with an inter­lock­ing device with or with­out guard lock­ing, in which case pro­tec­tion is ensured what­ev­er the posi­tion of the guard.NOTE 2Depend­ing on its con­struc­tion, a guard may be described as, for exam­ple, cas­ing, shield, cov­er, screen, door, enclos­ing guard.NOTE 3 The terms for types of guards are defined in 3.27.1 to 3.27.6. See also and ISO 14120 for types of guards and their require­ments. Guard — a part of machin­ery specif­i­cal­ly used to pro­vide pro­tec­tion by means of a phys­i­cal bar­ri­er. Depend­ing on its con­struc­tion, a guard may be called a cas­ing, screen, door, enclos­ing guard, etc. 3.22 guard: A bar­ri­er that pre­vents expo­sure to an iden­ti­fied haz­ard.E3.22 Some­times referred to as bar­ri­er guard.”
3.27.4 inter­lock­ing guard guard asso­ci­at­ed with an inter­lock­ing device so that, togeth­er with the con­trol sys­tem of the machine, the fol­low­ing func­tions are per­formed:
  • the haz­ardous machine func­tions “cov­ered” by the guard can­not oper­ate until the guard is closed,
  • if the guard is opened while haz­ardous machine func­tions are oper­at­ing, a stop com­mand is giv­en, and
  • when the guard is closed, the haz­ardous machine func­tions “cov­ered” by the guard can oper­ate (the clo­sure of the guard does not by itself start the haz­ardous machine func­tions)

NOTE ISO 14119 gives detailed pro­vi­sions.

Inter­locked bar­ri­er guard — a fixed or mov­able guard attached and inter­locked in such a man­ner that the machine tool will not cycle or will not con­tin­ue to cycle unless the guard itself or its hinged or mov­able sec­tion enclos­es the haz­ardous area. 3.32 inter­locked bar­ri­er guard: A bar­ri­er, or sec­tion of a bar­ri­er, inter­faced with the machine con­trol sys­tem in such a man­ner as to pre­vent inad­ver­tent access to the haz­ard.
3.27.2 mov­able guard
guard which can be opened with­out the use of tools
Mov­able guard — a guard gen­er­al­ly con­nect­ed by mechan­i­cal means (e.g., hinges or slides) to the machine frame or an adja­cent fixed ele­ment and that can be opened with­out the use of tools. The open­ing and clos­ing of this type of guard may be pow­ered. 3.37 mov­able bar­ri­er device: A safe­guard­ing device arranged to enclose the haz­ard area before machine motion can be ini­ti­at­ed.E3.37 There are two types of mov­able bar­ri­er devices:
  • Type A, which enclos­es the haz­ard area dur­ing the com­plete machine cycle;
  • Type B, which enclos­es the haz­ard area dur­ing the haz­ardous por­tion of the machine cycle.
3.28.1 inter­lock­ing device (interlock)mechanical, elec­tri­cal or oth­er type of device, the pur­pose of which is to pre­vent the oper­a­tion of haz­ardous machine func­tions under spec­i­fied con­di­tions (gen­er­al­ly as long as a guard is not closed) Inter­lock­ing device (inter­lock) — a mechan­i­cal, elec­tri­cal, or oth­er type of device, the pur­pose of which is to pre­vent the oper­a­tion of machine ele­ments under spec­i­fied con­di­tions (usu­al­ly when the guard is not closed). No def­i­n­i­tion
3.27.5 inter­lock­ing guard with guard lock­ing guard asso­ci­at­ed with an inter­lock­ing device and a guard lock­ing device so that, togeth­er with the con­trol sys­tem of the machine, the fol­low­ing func­tions are per­formed:
  • the haz­ardous machine func­tions “cov­ered” by the guard can­not oper­ate until the guard is closed and locked,
  • the guard remains closed and locked until the risk due to the haz­ardous machine func­tions “cov­ered” by the guard has dis­ap­peared, and
  • when the guard is closed and locked, the haz­ardous machine func­tions “cov­ered” by the guard can oper­ate (the clo­sure and lock­ing of the guard do not by them­selves start the haz­ardous machine func­tions)

NOTE ISO 14119 gives detailed pro­vi­sions.

Guard lock­ing device — a device that is designed to hold the guard closed and locked until the haz­ard has ceased. No def­i­n­i­tion

As you can see from the def­i­n­i­tions, mov­able guards can be opened with­out the use of tools, and are gen­er­al­ly fixed to the machine along one edge. Mov­able guards are always asso­ci­at­ed with an inter­lock­ing device. Guard selec­tion is cov­ered very well in ISO 14120 [11]. This stan­dard con­tains a flow­chart that is invalu­able for select­ing the appro­pri­ate style of guard for a giv­en appli­ca­tion.

5% Dis­count on ISO and IEC Stan­dards with code: CC2012

Though much empha­sis is placed on the cor­rect selec­tion of these inter­lock­ing devices, they rep­re­sent a very small por­tion of the hier­ar­chy. It is their wide­spread use that makes them so impor­tant when it comes to safe­ty sys­tem design.

Electrical vs. Mechanical Interlocks

Mechanical Interlocking
Fig­ure 2 — Mechan­i­cal Inter­lock­ing

Most mod­ern machines use elec­tri­cal inter­locks because the machine is fit­ted with an elec­tri­cal con­trol sys­tem, but it is entire­ly pos­si­ble to inter­lock the pow­er to the prime movers using mechan­i­cal means. This doesn’t affect the por­tion of the hier­ar­chy involved, but it may affect the con­trol reli­a­bil­i­ty analy­sis that you need to do.

Mechanical Interlocks

Fig­ure 2, from ISO 14119 [7, Fig. H.1, H.2 ], shows one exam­ple of a mechan­i­cal inter­lock.  In this case, when cam 2 is rotat­ed into the posi­tion shown in a), the guard can­not be opened. Once the haz­ardous con­di­tion behind the guard is effec­tive­ly con­trolled, cam 2 rotates to the posi­tion in b), and the guard can be opened.

Arrange­ments that use the open guard to phys­i­cal­ly block oper­a­tion of the con­trols can also be used in this way. See Fig­ure 3 [7, Fig. C.1, C.2].

Mechanical Interlocking using control devices
Fig­ure 3 — Mechan­i­cal Inter­lock­ing using machine con­trol devices

Fluid Power Interlocks

Fig­ure 4, from [7, Fig. K.2], shows an exam­ple of two flu­id-pow­er valves used in com­ple­men­tary mode on a sin­gle slid­ing gate.

Hydraulic interlock from ISO 14119
Fig­ure 4 — Exam­ple of a flu­id pow­er inter­lock

In this exam­ple, flu­id can flow from the pres­sure sup­ply (the cir­cle with the dot in it at the bot­tom of the dia­gram) through the two valves to the prime-mover, which could be a cylin­der, or a motor or some oth­er device when the guard is closed (posi­tion ‘a’). There could be an addi­tion­al con­trol valve fol­low­ing the inter­lock that would pro­vide the nor­mal con­trol mode for the device.

When the guard is opened (posi­tion ‘b’), the two valve spools shift to the sec­ond posi­tion, the low­er valve blocks the pres­sure sup­ply, and the upper valve vents the pres­sure in the cir­cuit, help­ing to pre­vent unex­pect­ed motion from trapped ener­gy.

If the spring in the upper valve fails, the low­er spool will be dri­ven by the gate into a posi­tion that will still block the pres­sure sup­ply and vent the trapped ener­gy in the cir­cuit.

5% Dis­count on ISO and IEC Stan­dards with code: CC2012

Electrical Interlocks

By far the major­i­ty of inter­locks used on machin­ery are elec­tri­cal. Elec­tri­cal inter­locks offer ease of instal­la­tion, flex­i­bil­i­ty in selec­tion of inter­lock­ing devices, and com­plex­i­ty from sim­ple to extreme­ly com­plex. The archi­tec­tur­al cat­e­gories cov­er any tech­nol­o­gy, whether it is mechan­i­cal, flu­idic, or elec­tri­cal, so let’s have a look at archi­tec­tures first.

Architecture Categories

Comparing ANSI, CSA, and ISO Control Reliability Categories
Fig­ure 5 — Con­trol Reli­a­bil­i­ty Cat­e­gories

In Cana­da, CSA Z432 [2] and CSA Z434 [3] pro­vide four cat­e­gories of con­trol reli­a­bil­i­ty: sim­ple, sin­gle chan­nel, sin­gle-chan­nel mon­i­tored and con­trol reli­able. In the U.S., the cat­e­gories are very sim­i­lar, with some dif­fer­ences in the def­i­n­i­tion for con­trol reli­able (see RIA R15.06, 1999). In the EU, there are five lev­els of con­trol reli­a­bil­i­ty, defined as Per­for­mance Lev­els (PL) giv­en in ISO 13849–1 [4]: PL a, b, c, d and e. Under­pin­ning these lev­els are five archi­tec­tur­al cat­e­gories: B, 1, 2, 3 and 4. Fig­ure 5 shows how these archi­tec­tures line up.

To add to the con­fu­sion, IEC 62061 [5] is anoth­er inter­na­tion­al con­trol reli­a­bil­i­ty stan­dard that could be used. This stan­dard defines reli­a­bil­i­ty in terms of Safe­ty Integri­ty Lev­els (SILs). These SILs do not line up exact­ly with the PLs in [4], but they are sim­i­lar. [5] is based on IEC 61508 [6], a well-respect­ed con­trol reli­a­bil­i­ty stan­dard used in the process indus­tries. [5] is not well suit­ed to appli­ca­tions involv­ing hydraulic or pneu­mat­ic ele­ments.

The orange arrow in Fig­ure 5 high­lights the fact that the def­i­n­i­tion in the CSA stan­dards results in a more reli­able sys­tem than the ANSI/RIA def­i­n­i­tion because the CSA def­i­n­i­tion requires TWO (2) sep­a­rate phys­i­cal switch­es on the guard to meet the require­ment, while the ANSI/RIA def­i­n­i­tion only requires redun­dant cir­cuits, but makes no require­ment for redun­dant devices. Note that the arrow rep­re­sent­ing the ANSI/RIA Con­trol reli­a­bil­i­ty cat­e­go­ry falls below the ISO Cat­e­go­ry 3 arrow due to this same detail in the def­i­n­i­tion.

Note that Fig­ure 5 does not address the ques­tion of PL’s or SIL’s and how they relate to each oth­er. That is a top­ic for anoth­er arti­cle!

The North Amer­i­can archi­tec­tures deal pri­mar­i­ly with elec­tri­cal or flu­id-pow­er con­trols, while the EU sys­tem can accom­mo­date elec­tri­cal, flu­id-pow­er and mechan­i­cal sys­tems.

From the sin­gle-chan­nel-mon­i­tored or Cat­e­go­ry 2 lev­el up, the sys­tems are required to have test­ing built-in, enabling the detec­tion of fail­ures in the sys­tem. The lev­el of fault tol­er­ance increas­es as the cat­e­go­ry increas­es.

Interlocking devices

Inter­lock­ing devices are the com­po­nents that are used to cre­ate the inter­lock between the safe­guard­ing device and the machine’s pow­er and con­trol sys­tems. Inter­lock­ing sys­tems can be pure­ly mechan­i­cal, pure­ly elec­tri­cal or a com­bi­na­tion of these.

Roller cam switch used as part of a complementary interlock
Pho­to 1 — Roller Cam Switch

Most machin­ery has an electrical/electronic con­trol sys­tem, and these sys­tems are the most com­mon way that machine haz­ards are con­trolled. Switch­es and sen­sors con­nect­ed to these sys­tems are the most com­mon types of inter­lock­ing devices.

Inter­lock­ing devices can be some­thing as sim­ple as a micro-switch or a reed switch, or as com­plex as a non-con­tact sen­sor with an elec­tro­mag­net­ic lock­ing device.

Images of inter­lock­ing devices used in this arti­cle are rep­re­sen­ta­tive of some of the types and man­u­fac­tur­ers avail­able, but should not be tak­en as an endorse­ment of any par­tic­u­lar make or type of device. There are lots of man­u­fac­tur­ers and unique mod­els that can fit any giv­en appli­ca­tion, and most man­u­fac­tur­ers have sim­i­lar devices avail­able.

Pho­to 1 shows a safe­ty-rat­ed, direct-dri­ve roller cam switch used as half of a com­ple­men­tary switch arrange­ment on a gate inter­lock. The inte­gra­tor failed to cov­er the switch­es to pre­vent inten­tion­al defeat in this appli­ca­tion.

Micro-Switch used for interlocking
Pho­to 2 — Micro-Switch used for inter­lock­ing

Pho­to 2 shows a ‘microswitch’ used for inter­lock­ing a machine cov­er pan­el that is nor­mal­ly held in place with fas­ten­ers, and so is a ‘fixed guard’ as long as the fas­ten­ers require a tool to remove. Fixed guards do not require inter­locks under most cir­cum­stances. Some prod­uct fam­i­ly stan­dards do require inter­locks on fixed guards due to the nature of the haz­ards involved.

Microswitch­es are not safe­ty-rat­ed and are not rec­om­mend­ed for use in this appli­ca­tion. They are eas­i­ly defeat­ed and tend to fail to dan­ger in my expe­ri­ence.

Require­ments for inter­lock­ing devices are pub­lished in a num­ber of stan­dards, but the key ones for indus­tri­al machin­ery are ISO 14119 [7], [2], and ANSI B11.0 [8]. These stan­dards define the elec­tri­cal and mechan­i­cal require­ments, and in some cas­es the test­ing require­ments, that devices intend­ed for safe­ty appli­ca­tions must meet before they can be clas­si­fied as safe­ty com­po­nents.
Down­load stan­dards

Typical plastic-bodied interlocking device
Pho­to 3 — Schm­er­sal AZ15 plas­tic inter­lock switch

These devices are also inte­gral to the reli­a­bil­i­ty of the con­trol sys­tems into which they are inte­grat­ed. Inter­lock devices, on their own, can­not meet a reli­a­bil­i­ty rat­ing above ISO 13849–1 Cat­e­go­ry 1, or CSA Z432-04 Sin­gle Chan­nel. To under­stand this, con­sid­er that the def­i­n­i­tions for Cat­e­go­ry 2, 3 and 4 all require the abil­i­ty for the sys­tem to mon­i­tor and detect fail­ures, and in Cat­e­gories 3 & 4, to pre­vent the loss of the safe­ty func­tion. Sim­i­lar require­ments exist in CSA and ANSI’s “sin­gle-chan­nel-mon­i­tored,” and “con­trol-reli­able” cat­e­gories. Unless the inter­lock device has a mon­i­tor­ing sys­tem inte­grat­ed into the device, these cat­e­gories can­not be achieved.

Guard Locking

Inter­lock­ing devices are often used in con­junc­tion with  guard lock­ing. There are a few rea­sons why a design­er might want to lock a guard closed, but the most com­mon one is a lack of safe­ty dis­tance. In some cas­es the guard may be locked closed to pro­tect the process rather than the oper­a­tor, or for oth­er rea­sons.

Interlock Device with Guard Locking
Pho­to 4 — Inter­lock­ing Device with Guard Lock­ing

Safe­ty dis­tance is the dis­tance between the open­ing cov­ered by the mov­able guard and the haz­ard. The min­i­mum dis­tance is deter­mined using the safe­ty dis­tance cal­cu­la­tions giv­en in [2] and ISO 13855 [9]. This cal­cu­la­tion uses a ‘hand-speed con­stant’, called K, to rep­re­sent the the­o­ret­i­cal speed that the aver­age per­son can achieve when extend­ing their hand straight for­ward when stand­ing in front of the open­ing. In North Amer­i­ca, K is usu­al­ly 63 inches/second, or 1600 mm/s. Inter­na­tion­al­ly and in the EU, there are two speeds, 2000 mm/s, used for an approach per­pen­dic­u­lar to the plane of the guard, or 1600 mm/second for approach­es at 45 degrees or less [9]. 2000 mm/s is used with mov­able guards, and is approx­i­mate­ly equiv­a­lent to 79 inches/second. Using the Inter­na­tion­al approach, if the val­ue of Ds is greater than 500 mm when cal­cu­lat­ed using K = 2 000, then [9] per­mits the cal­cu­la­tion to be done using K = 1 600 instead.

Using the stop­ping time of the machin­ery and K, the min­i­mum safe­ty dis­tance can be cal­cu­lat­ed.

Eq. 1              Ds = K x Ts

Using Equa­tion 1 [2], assume you have a machine that takes 250 ms to stop when the inter­lock is opened. Insert­ing the val­ues into the equa­tion gives you a min­i­mum safe­ty dis­tance of:

Exam­ple 1             Ds = 63 in/s x 0.250 s = 15.75 inch­es

Exam­ple 2             Ds = 2000 mm/s x 0.250 s = 500 mm

As you can see, the Inter­na­tion­al val­ue of K gives a more con­ser­v­a­tive val­ue, since 500 mm is approx­i­mate­ly 20 inch­es.

Note that I have not includ­ed the ‘Pen­e­tra­tion Fac­tor’, Dpf in this cal­cu­la­tion. This fac­tor is used with pres­ence sens­ing safe­guard­ing devices like light cur­tains, fences, mats, two-hand con­trols, etc. This fac­tor is not applic­a­ble to mov­able, inter­locked guards.

Also impor­tant to con­sid­er is the amount the guard can be opened before acti­vat­ing the inter­lock. This will depend on many fac­tors, but for sim­plic­i­ty, con­sid­er a hinged gate on an access point. If the guard uses two hinge-pin style switch­es, you may be able to open the gate a few inch­es before the switch­es rotate enough to detect the open­ing of the guard. In order to deter­mine the open­ing size, you would slow­ly open the gate just to the point where the inter­lock is tripped, and then mea­sure the width of the open­ing. Using the tables found in [2], [3], [10], or ISO 13857 [12], you can then deter­mine how far the guard must be from the haz­ards behind it. If that dis­tance is greater than what is avail­able, you could remove one hinge-pin switch, and replace it with anoth­er type mount­ed on the post oppo­site the hinges. This could be a keyed inter­lock like Pho­to 3, or a non-con­tact device like Pho­to 5. This would reduce the open­ing width at the point of detec­tion, and there­by reduce the safe­ty dis­tance behind the guard. But what if that is still not good enough?

If you have to install the guard clos­er to the haz­ard than the min­i­mum safe­ty dis­tance, lock­ing the guard closed and mon­i­tor­ing the stand-still of the machine allows you to ignore the safe­ty dis­tance require­ment because the guard can­not be opened until the machin­ery is at a stand­still, or in a safe state.

Guard lock­ing devices can be mechan­i­cal, elec­tro­mag­net­ic, or any oth­er type that pre­vents the guard from open­ing. The guard lock­ing device is only released when the machine has been made safe.

There are many types of safe­ty-rat­ed stand-still mon­i­tor­ing devices avail­able now, and many vari­able-fre­quen­cy dri­ves and ser­vo dri­ve sys­tems are avail­able with safe­ty-rat­ed stand-still mon­i­tor­ing.

Environment, failure modes and fault exclusion

Every device has fail­ure modes. The cor­rect selec­tion of the device starts with under­stand­ing the phys­i­cal envi­ron­ment to which the device will be exposed. This means under­stand­ing the tem­per­a­ture, humid­i­ty, dust/abrasives expo­sure, chem­i­cal expo­sures, and mechan­i­cal shock and vibra­tion expo­sures in the appli­ca­tion. Select­ing a del­i­cate reed switch for use in a high-vibra­tion, high-shock envi­ron­ment is a recipe for fail­ure, just as select­ing a mechan­i­cal switch in a dusty, damp, cor­ro­sive envi­ron­ment will also lead to pre­ma­ture fail­ure.

Example of a non-contact interlocking device
Pho­to 5 — JOKAB EDEN Inter­lock Sys­tem

Inter­lock device man­u­fac­tur­ers have a vari­ety of non-con­tact inter­lock­ing devices avail­able today that use cod­ed RF sig­nals or RF ID tech­nolo­gies to ensure that the inter­lock can­not be defeat­ed by sim­ple mea­sures, like tap­ing a mag­net to a reed switch. The Jokab EDEN sys­tem is one exam­ple of a sys­tem like this that also exhibits IP65 lev­el resis­tance to mois­ture and dust. Note that sys­tems like this include a safe­ty mon­i­tor­ing device and the sys­tem as a whole can meet Con­trol Reli­able or Cat­e­go­ry 3 / 4 archi­tec­tur­al require­ments when a sim­ple inter­lock switch could not.

The device stan­dards do pro­vide some guid­ance in mak­ing these selec­tions, but it’s pret­ty gen­er­al.

Fault Exclusion

Fault exclu­sion is anoth­er key con­cept that needs to be under­stood. Fault exclu­sion holds that fail­ure modes that have an exceed­ing­ly low prob­a­bil­i­ty of occur­ring dur­ing the life­time of the prod­uct can be exclud­ed from con­sid­er­a­tion. This can apply to elec­tri­cal or mechan­i­cal fail­ures. Here’s the catch: Fault exclu­sion is not per­mit­ted under any North Amer­i­can stan­dards at the moment. Designs based on the North Amer­i­can con­trol reli­a­bil­i­ty stan­dards can­not take advan­tage of fault exclu­sions. Designs based on the Inter­na­tion­al and EU stan­dards can use fault exclu­sion, but be aware that sig­nif­i­cant doc­u­men­ta­tion sup­port­ing the exclu­sion of each fault is need­ed.

Defeat resistance

Diagram showing one method of preventing interlock defeat.
Fig­ure 6 — Pre­vent­ing Defeat

The North Amer­i­can stan­dards require that the devices cho­sen for safe­ty-relat­ed inter­locks be defeat-resis­tant, mean­ing they can­not be eas­i­ly fooled with a cable-tie, a scrap of met­al or a piece of tape.

Fig­ure 6 [7, Fig. 10] shows a key-oper­at­ed switch, like the Schm­er­sal AZ15, installed with a cov­er that is intend­ed to fur­ther guard against defeat. The key, some­times called a ‘tongue’, used with the switch pre­vents defeat using a flat piece of met­al or a knife blade. The cov­er pre­vents direct access to the inter­lock­ing device itself. Use of tam­per-resis­tant hard­ware will fur­ther reduce the like­li­hood that some­one can remove the key and insert it into the switch, bypass­ing the guard.

Inner-Tite tamper resistance fasteners
Pho­to 6 — Tam­per-resis­tant fas­ten­ers

5% Dis­count on ISO and IEC Stan­dards with code: CC2012

The Inter­na­tion­al and EU stan­dards do not require the devices to be inher­ent­ly defeat resis­tant, which means that you can use “safe­ty-rat­ed” lim­it switch­es with roller-cam actu­a­tors, for exam­ple. How­ev­er, as a design­er, you are required to con­sid­er all rea­son­ably fore­see­able fail­ure modes, and that includes inten­tion­al defeat. If the inter­lock­ing devices are eas­i­ly acces­si­ble, then you must select defeat-resis­tant devices and install them with tam­per-resis­tant hard­ware to cov­er these fail­ure modes.

Pho­to 6 shows one type of tam­per resis­tant fas­ten­ers made by Inner-Tite [13]. Pho­to 7 shows fas­ten­ers with unique­ly keyed key ways made by Bryce Fas­ten­er [14], and Pho­to 8 shows more tra­di­tion­al tam­per­proof fas­ten­ers from the Tam­per­proof Screw Com­pa­ny [15]. Using fas­ten­ers like these will result in the high­est lev­el of secu­ri­ty in a thread­ed fas­ten­er. There are many dif­fer­ent designs avail­able from a wide vari­ety of man­u­fac­tur­ers.

Bryce Key-Rex tamper-resistant fasteners
Pho­to 7 — Keyed Tam­per-Resis­tant Fas­ten­ers
Tamper proof screws made by the Tamperproof Screw Company
Pho­to 8 — Tam­per proof screws

Almost any inter­lock­ing device can be bypassed by a knowl­edge­able per­son using wire and the right tools. This type of defeat is not gen­er­al­ly con­sid­ered, as the degree of knowl­edge required is greater than that pos­sessed by “nor­mal” users.

How to select the right device

When select­ing an inter­lock­ing device, start by look­ing at the envi­ron­ment in which the device will be locat­ed. Is it dry? Is it wet (i.e., with cut­ting flu­id, oil, water, etc.)? Is it abra­sive (dusty, sandy, chips, etc.)? Is it indoors or out­doors and sub­ject to wide tem­per­a­ture vari­a­tions?

Is there a prod­uct stan­dard that defines the type of inter­lock you are design­ing? An exam­ple of this is the inter­lock types in ANSI B151.1 [4] for plas­tic injec­tion mould­ing machines. There may be restric­tions on the type of devices that are suit­able based on the require­ments in the stan­dard.

Con­sid­er inte­gra­tion require­ments with the con­trols. Is the inter­lock pure­ly mechan­i­cal? Is it inte­grat­ed with the elec­tri­cal sys­tem? Do you require guard lock­ing capa­bil­i­ty? Do you require defeat resis­tance? What about device mon­i­tor­ing or annun­ci­a­tion?

Once you can answer these ques­tions, you will have nar­rowed down your selec­tions con­sid­er­ably. The final ques­tion is: What brand is pre­ferred? Go to your pre­ferred supplier’s cat­a­logues and make a selec­tion that fits with the answers to the pre­vi­ous ques­tions.

The next stage is to inte­grate the device(s) into the con­trols, using whichev­er con­trol reli­a­bil­i­ty stan­dard you need to meet. That is the sub­ject for a series of arti­cles!


5% Dis­count on ISO and IEC Stan­dards with code: CC2012

[1] Safe­ty of machin­ery — Gen­er­al prin­ci­ples for design — Risk assess­ment and risk reduc­tion, ISO Stan­dard 12100, Edi­tion 1, 2010

[2] Safe­guard­ing of Machin­ery, CSA Stan­dard Z432, 2004 (R2009)

Buy CSA Stan­dards

[3] Indus­tri­al Robots and Robot Sys­tems — Gen­er­al Safe­ty Require­ments, CSA Stan­dard Z434, 2003 (R2008)

[4] Safe­ty of machin­ery — Safe­ty-relat­ed parts of con­trol sys­tems — Part 1: Gen­er­al prin­ci­ples for design, ISO Stan­dard 13849–1, 2006

[5] Safe­ty of machin­ery – Func­tion­al safe­ty of safe­ty-relat­ed elec­tri­cal, elec­tron­ic and pro­gram­ma­ble elec­tron­ic con­trol sys­tems, IEC Stan­dard 62061, Edi­tion 1, 2005

[6] Func­tion­al safe­ty of electrical/electronic/programmable elec­tron­ic safe­ty-relat­ed sys­tems (Sev­en Parts), IEC Stan­dard 61508-X

[7] Safe­ty of machin­ery — Inter­lock­ing devices asso­ci­at­ed with guards — Prin­ci­ples for design and selec­tion, ISO Stan­dard 14119, 1998

[8] Amer­i­can Nation­al Stan­dard for Machines, Gen­er­al Safe­ty Require­ments Com­mon to ANSI B11 Machines, ANSI Stan­dard B11, 2008
Down­load ANSI stan­dards

[9] Safe­ty of machin­ery — Posi­tion­ing of safe­guards with respect to the approach speeds of parts of the human body, ISO 13855, 2010

[10] Amer­i­can Nation­al Stan­dard for Machine Tools – Per­for­mance Cri­te­ria for Safe­guard­ing, ANSI B11.19, 2003

[11] Safe­ty of machin­ery — Guards — Gen­er­al require­ments for the design and con­struc­tion of fixed and mov­able guards, ISO 14120. 2002

[12] Safe­ty of machin­ery — Safe­ty dis­tances to pre­vent haz­ard zones being reached by upper and low­er limbs, ISO 13857. 2008.

[13] Inner-Tite Corp. home page. (2012). Avail­able: http://www.inner-tite.com/

[14] Bryce Fas­ten­er, Inc. home page. (2012). Avail­able: http://www.brycefastener.com/

[15] Tam­per­proof Screw Co., Inc., home page. (2013). Avail­able: http://www.tamperproof.com

Interlocked gate testing

Did you know that inter­locked gates require stop­ping per­for­mance test­ing?

Machin­ery needs to be able to stop in the time it takes a per­son to open the guard and reach the haz­ard. If the dis­tance from the guard open­ing to the haz­ard is short enough that a per­son can reach the dan­ger point before the haz­ard can be con­trolled, the guard is use­less. The result­ing sit­u­a­tion may be worse

Did you know that inter­locked gates require stop­ping per­for­mance test­ing?

Machin­ery needs to be able to stop in the time it takes a per­son to open the guard and reach the haz­ard. If the dis­tance from the guard open­ing to the haz­ard is short enough that a per­son can reach the dan­ger point before the haz­ard can be con­trolled, the guard is use­less. The result­ing sit­u­a­tion may be worse than not hav­ing a guard because it’s pres­ence leads to a false sense of secu­ri­ty in users.

Test the stop­ping time of guard­ed haz­ards and make sure that guards are far enough away from the dan­ger zone to be effec­tive. For more on stop­ping per­for­mance require­ments, see CSA Z434, EN 999 (soon to be replaced by EN 13855:2010), and in the USA, 29 CFR 1910.217(h)(9)(v).

Down­load ISO Stan­dards
Down­load IEC stan­dards, Inter­na­tion­al Elec­trotech­ni­cal Com­mis­sion stan­dards.
Down­load BSI Stan­dards (British Stan­dards Insti­tu­tion)
Down­load ANSI stan­dards

Need help with stop­ping per­for­mance test­ing? Con­tact us!