Why YOU need a Certification Strategy

How compliance efforts go wrong

Clients call when they have problems. They sent some product to a certification body, some tests were done and the product failed. Now what? Usually the delivery date for the certified product is approaching quickly, and no time is available to react. Delivery is delayed and the customer is upset. The business may even be lost.

This process goes wrong for a number of reasons:

  1. The end goal for the certification and the intermediate requirements were not considered
  2. The certification body chose the standard, and the manufacturer had no idea what the standard required
  3. The samples were not carefully prepared for the certification body
  4. Information was missing or partially missing

Certification Motivation

What motivates a manufacturer to certify a product? The decision to certify comes about for a variety of reasons, including:

  1. Legal requirement for the market
  2. Customer request
  3. Liability limitation
  4. Marketing advantage over competitor’s offerings

I’ve talked about the differences between CE Marking and traditional Certification processes in a number of articles, including this one recently, so I won’t repeat myself here. In Canada, Federal [1, 125(m)(iii)] and Provincial law [2, 113] requires anyone selling an electrical product to ensure that it bears an electrical safety mark, and this is supported in the Canadian Electrical Code [3, 2-024]. This requirement is often overlooked in the industrial / commercial market where post-installation equipment inspection, called “Field Evaluation”, is common.

In the US, each State has a slightly different approach, so you will need to check out the requirements in the states where your product is sold so that you can ensure compliance with the local requirements. From a workplace perspective, the US OSHA requires that all electrical products used in the workplace bear a mark from a Nationally Recognized Testing Laboratory (NRTL) [5].

Certifying your product provides some degree of liability limitation, in that it shows that you met the minimum legal requirements for your marketplace. To really limit your liability effectively, you will need to do more than just meet the minimum requirements, and you will need documentation of everything done to meet or exceed those requirements.

If you offer certified products in a market where this is uncommon, you have a marketing advantage as long as your customers understand the advantages certified product brings. If certification is rare in your markets, you may need to undertake some educational marketing to help customers “get it”.

Another key point needs to be considered: Product volume. Certification costs money and takes time. If you are selling less than 200 units per year of a given product in your line, certification for that product is unlikely to be feasible. For product volumes from one to 200 units per year, Field Evaluation provides a much more time and cost effective way to get your product marked.

The diagram shows the general process flow for this activity. If you are choosing to use Field Evaluation instead of Certification, substitute “Field Evaluation” wherever you see “Certification” in the diagram.

Flow chart showing certification process flow.
Certification Process Flow

Selecting standards

Selecting the “right” standard for your product can be a challenge, especially in the industrial market where products are often highly specialized, “one-off” products. In many of these cases, no standard that specifically covers the product may exist. For relatively simple products, or for products that are very common, like TV’s, computers, and audio-video equipment, there are “Product Family” standards that specifically cover these types products.

Not every standard is a certification standard. Most of the certification standards are focused on electrical and fire safety. The concerns are the prevention of electrical shock, arc flash, and fire. Certification standards will typically include specific tests that must be passed to show compliance with the requirements. Design standards, on the other hand, will provide general performance requirements and sometimes prescriptive feature requirements, but no test requirements. This is typical in the industrial machinery sector where standards like CSA Z432 [6] and the ANSI B11 family [7] of standards apply. In these cases, you may be able to have the product certified for electrical safety, but not for machinery safety. This does not eliminate corporate liability for the machinery hazards, requiring manufacturers to be knowledgeable and diligent in applying design standards.

Developing a Certification Strategy

To develop a sound strategy, I recommend a “bottom-up” approach. To apply this idea, start with the bill of materials for the product. Look first at the purchased products: How many of these items are either already certified by their manufacturer? All of the certified items can be eliminated from further consideration for the moment. Next, consider the purchased but un-certified products. Contact all of your suppliers to determine which of these products can be purchased certified, and adjust the bill of materials to reflect the part numbers for the certified versions.

Now, the harder part. All of the remaining items on the bill of materials need to be looked at for certification. Anything that cannot or need not be certified, e.g., nuts and bolts, other mechanical parts that are not pressure bearing, can be excluded from consideration. You now have a short list of uncertified components that require certification.

For each item on the short list, research the standards available. The Scope of the standards will help guide you regarding their applicability. Once you have a matched list of components and standards, you can extend that research to include the top level product.

Now you have the beginning of a compliance strategy. The next piece of the puzzle involves the internal evaluation of each component against the standards chosen. This give you the ability to revise your thinking, either of the standard you chose or of the design and construction of the component. Making good choices at this stage to either correct issues found in the design or construction of the component, or in the selection of the standard, can save you huge amounts of time and effort once the certification body gets involved.

Once the components have successfully passed the internal “pre-compliance” evaluation, you can get the certification body involved, and start the formal compliance process for each component. As this part of the process progresses, the certification body may have additional questions or requests for information. To reduce these in-process questions, make sure that each component is clearly identified, that you have unique part numbers for each part, and that you have provided information on the materials used in the construction of the component, as well as detailed engineering drawings.

As the component certification work progresses, you can start on the top level product certification work. The top level product needs to go through the same sort of internal pre-compliance process as the components so that you can be as certain as possible that the product will meet the requirements when it gets to the certification lab.

Preparation of the data package and the sample(s) of the top-level product that will be submitted must be done carefully. Construction of the samples must match the manufacturing drawings and instructions as closely as possible. Once everything is ready, the samples can be submitted for evaluation.

Working with your Certifier

Dealing with a Certification Body can be very challenging. Much of the experience will be based on the project engineer that is responsible for your product’s evaluation. It’s important to set up a good relationship with this person at the beginning, because once problems start to crop up in the lab you will need to be able to talk to this person. Making sure that you have the “right” standards selected for your product is really important, and the project engineer must agree with you. They can refuse to certify a product if they feel that the standard chosen is incorrect, and since they have the final word, there is no arguing with them. An open discussion at the beginning of the project to discuss the standards selected is a good place to start. If your ideas and theirs deviate in a big way, you may have to compromise on their selection, or worse, stop the project and review the problems encountered.

Once the product is certified, the Certification Body will conduct regular audits on the manufacturing facility(ies) to make sure that the production testing is being done, production records are kept, and that the QA programs are ensuring that only good product leaves the plant.

An important part of the QA process is the Customer Complaints Program. Manufacturers must have a program in place to record customer complaints, and to respond to those complaints. A decision tree that helps customer service representatives differentiate between safety-related and non-safety related complaints should be developed. Safety related complaints should result in engineering review of the problems and determinations about the cause of the problems. If these are related to manufacturing or design issues, and especially if these are related to compliance with the requirements of the certification standard, a recall of the product may be needed. If this is the case, get the Certifier involved as soon as possible. Failure to act, and failure to inform the certifier can result in the certification being revoked.

References

[1]     Canada Labour Code, [online]. Available: http://canlii.ca/t/522fd. Accessed: 2014-01-27.

[2]     Ontario Electricity Act – Marking requirements Avaialble:Ontario Electricity Act. Accessed: 2014-01-27.

[3]     Canadian Electrical Code, CSA C22.1. 2012.

[4]     National Electrical Code, NFPA 70. 2014.

[5]     Occupational Safety and Health Standards, 1910 Subpart S, Electrical, Installatin and Use. 29 CFR 1910.303(b)(2), [online]. Available: https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=9880. Accessed: 2014-01-27.

[6]     Safeguarding of Machinery. CSA Z432. 2004.

[7]     Safety of Machines. B11.org, [online]. Available: http://b11standards.org/standards/. Accessed: 2014-01-27.