ISO 13849 – 1 Analysis — Part 8: Fault Exclusion

This entry is part of 9 in the series How to do a 13849 – 1 ana­lys­is

Fault Consideration & Fault Exclusion

ISO 13849 – 1, Chapter 7 [1, 7] dis­cusses the need for fault con­sid­er­a­tion and fault exclu­sion. Fault con­sid­er­a­tion is the pro­cess of examin­ing the com­pon­ents and sub-​systems used in the safety-​related part of the con­trol sys­tem (SRP/​CS) and mak­ing a list of all the faults that could occur in each one. This a def­in­itely non-​trivial exer­cise!

Thinking back to some of the earli­er art­icles in this series where I men­tioned the dif­fer­ent types of faults, you may recall that there are detect­able and undetect­able faults, and there are safe and dan­ger­ous faults, lead­ing us to four kinds of fault:

  • Safe undetect­able faults
  • Dangerous undetect­able faults
  • Safe detect­able faults
  • Dangerous undetect­able faults

For sys­tems where no dia­gnostics are used, Category B and 1, faults need to be elim­in­ated using inher­ently safe design tech­niques. Care needs to be taken when clas­si­fy­ing com­pon­ents as “well-​tried” versus using a fault exclu­sion, as com­pon­ents that might nor­mally be con­sidered “well-​tried” might not meet those require­ments in every applic­a­tion.

For sys­tems where dia­gnostics are part of the design, i.e., Category 2, 3, and 4, the fault lists are used to eval­u­ate the dia­gnost­ic cov­er­age (DC) of the test sys­tems. Depending on the archi­tec­ture, cer­tain levels of DC are required to meet the rel­ev­ant PL, see [1, Fig. 5]. The fault lists are start­ing point for the determ­in­a­tion of DC, and are an input into the hard­ware and soft­ware designs. All of the dan­ger­ous detect­able faults must be covered by the dia­gnostics, and the DC must be high enough to meet the PLr. for the safety func­tion.

The fault lists and fault exclu­sions are used in the Validation por­tion of this pro­cess as well. At the start of the Validation pro­cess flow chart [2, Fig. 1], you can see how the fault lists and the cri­ter­ia used for fault exclu­sion are used as inputs to the val­id­a­tion plan.

The diagram shows the first few stages in the ISO 13849-2 Validation process. See ISO 13849-2, Figure 1.
Start of ISO 13849 – 2 Fig. 1

Faults that can be excluded do not need to val­id­ated, sav­ing time and effort dur­ing the sys­tem veri­fic­a­tion and val­id­a­tion (V & V). How is this done?

Fault Consideration

The first step is to devel­op a list of poten­tial faults that could occur, based on the com­pon­ents and sub­sys­tems included in SRP/​CS. ISO 13849 – 2 [2] includes lists of typ­ic­al faults for vari­ous tech­no­lo­gies. For example, [2, Table A.4] is the fault list for mech­an­ic­al com­pon­ents.

Mechanical fault list from ISO 13849-2
Table A.4 — Faults and fault exclu­sions — Mechanical devices, com­pon­ents and ele­ments
(e.g. cam, fol­low­er, chain, clutch, brake, shaft, screw, pin, guide, bear­ing)

[2] con­tains tables sim­il­ar to Table A.4 for:

  • Pressure-​coil springs
  • Directional con­trol valves
  • Stop (shut-​off) valves/​non-​return (check) valves/​quick-​action vent­ing valves/​shuttle valves, etc.
  • Flow valves
  • Pressure valves
  • Pipework
  • Hose assem­blies
  • Connectors
  • Pressure trans­mit­ters and pres­sure medi­um trans­ducers
  • Compressed air treat­ment — Filters
  • Compressed-​air treat­ment — Oilers
  • Compressed air treat­ment — Silencers
  • Accumulators and pres­sure ves­sels
  • Sensors
  • Fluidic Information pro­cessing — Logical ele­ments
  • etc.

As you can see, there are many dif­fer­ent types of faults that need to be con­sidered. Keep in mind that I did not give you all of the dif­fer­ent fault lists – this post would be a mile long if I did that! The point is that you need to devel­op a fault list for your sys­tem, and then con­sider the impact of each fault on the oper­a­tion of the sys­tem. If you have com­pon­ents or sub­sys­tems that are not lis­ted in the tables, then you need to devel­op your own fault lists for those items. Using Failure Modes and Effects Analysis (FMEA) tech­niques are usu­ally the best approach for these com­pon­ents [23], [24].

When con­sid­er­ing the faults to be included in the list there are a few things that should be con­sidered [1, 7.2]:

  • if after the first fault occurs oth­er faults devel­op due to the first fault, then you can group those faults togeth­er as a single fault
  • two or more single faults with a com­mon cause can be con­sidered as a single fault
  • mul­tiple faults with dif­fer­ent causes but occur­ring sim­ul­tan­eously is con­sidered improb­able and does not need to be con­sidered


A voltage reg­u­lat­or fails in a sys­tem power sup­ply so that the 24 Vdc out­put rises to an unreg­u­lated 36 Vdc (the intern­al power sup­ply bus voltage), and after some time has passed, two sensors fail, then all three fail­ures can be grouped and con­sidered as a single fault.

If a light­ning strike occurs on the power line and the res­ult­ing surge voltage on the 400 V mains causes an inter­pos­ing con­tact­or and the motor drive it con­trols to fail to danger, then these fail­ures may be grouped and con­sidered as one.

A pneu­mat­ic lub­ric­at­or runs out of lub­ric­ant and is not refilled, depriving down­stream pneu­mat­ic com­pon­ents of lub­ric­a­tion. The spool on the sys­tem dump valve sticks open because it is not cycled often enough. Neither of these fail­ures has the same cause, so there is no need to con­sider them as occur­ring sim­ul­tan­eously because the prob­ab­il­ity of both hap­pen­ing con­cur­rently is extremely small. One cau­tion: These two faults MAY have a com­mon cause – poor main­ten­ance. Even if this is true and you decide to con­sider them to be two faults with a com­mon cause, they could then be grouped as a single fault.

Fault Exclusion

Once you have your well-​considered fault lists togeth­er, the next ques­tion is “Can any of the lis­ted faults be excluded?” This is a tricky ques­tion! There are a few points to con­sider:

  • Does the sys­tem archi­tec­ture allow for fault exclu­sion?
  • Is the fault tech­nic­ally improb­able, even if it is pos­sible?
  • Does exper­i­ence show that the fault is unlikely to occur?*
  • Are there tech­nic­al require­ments related to the applic­a­tion and the haz­ard that might sup­port fault exclu­sion?

BE CAREFUL with this one!

Whenever faults are excluded, a detailed jus­ti­fic­a­tion for the exclu­sion needs to be included in the sys­tem design doc­u­ment­a­tion. Simply decid­ing that the fault can be excluded is NOT ENOUGH! Consider the risk a per­son will be exposed to in the event the fault occurs. If the sever­ity is very high, i.e., severe per­man­ent injury or death, you may not want to exclude the fault even if you think you could. Careful con­sid­er­a­tion of the res­ult­ing injury scen­ario is needed.

Basing a fault exclu­sion on per­son­al exper­i­ence is sel­dom con­sidered adequate, which is why I added the aster­isk (*) above. Look for good stat­ist­ic­al data to sup­port any decision to use a fault exclu­sion.

There is much more inform­a­tion avail­able in IEC 61508 – 2 on the sub­ject of fault exclu­sion, and there is good inform­a­tion in some of the books men­tioned below [0.2], [0.3], and [0.4]. If you know of addi­tion­al resources you would like to share, please post the inform­a­tion in the com­ments!


3.1.3 fault
state of an item char­ac­ter­ized by the inab­il­ity to per­form a required func­tion, exclud­ing the inab­il­ity dur­ing pre­vent­ive main­ten­ance or oth­er planned actions, or due to lack of extern­al resources
Note 1 to entry: A fault is often the res­ult of a fail­ure of the item itself, but may exist without pri­or fail­ure.
Note 2 to entry: In this part of ISO 13849, “fault” means ran­dom fault. [SOURCE: IEC 60050?191:1990, 05 – 01.]

Book List

Here are some books that I think you may find help­ful on this jour­ney:

[0]     B. Main, Risk Assessment: Basics and Benchmarks, 1st ed. Ann Arbor, MI USA: DSE, 2004.

[0.1]  D. Smith and K. Simpson, Safety crit­ic­al sys­tems hand­book. Amsterdam: Elsevier/​Butterworth-​Heinemann, 2011.

[0.2]  Electromagnetic Compatibility for Functional Safety, 1st ed. Stevenage, UK: The Institution of Engineering and Technology, 2008.

[0.3]  Overview of tech­niques and meas­ures related to EMC for Functional Safety, 1st ed. Stevenage, UK: Overview of tech­niques and meas­ures related to EMC for Functional Safety, 2013.


Note: This ref­er­ence list starts in Part 1 of the series, so “miss­ing” ref­er­ences may show in oth­er parts of the series. Included in the last post of the series is the com­plete ref­er­ence list.

[1]     Safety of machinery — Safety-​related parts of con­trol sys­tems — Part 1: General prin­ciples for design. 3rd Edition. ISO Standard 13849 – 1. 2015.

[2]     Safety of machinery – Safety-​related parts of con­trol sys­tems – Part 2: Validation. 2nd Edition. ISO Standard 13849 – 2. 2012.

[3]      Safety of machinery – General prin­ciples for design – Risk assess­ment and risk reduc­tion. ISO Standard 12100. 2010.

[4]     Safeguarding of Machinery. 2nd Edition. CSA Standard Z432. 2004.

[5]     Risk Assessment and Risk Reduction- A Guideline to Estimate, Evaluate and Reduce Risks Associated with Machine Tools. ANSI Technical Report B11.TR3. 2000.

[6]    Safety of machinery – Emergency stop func­tion – Principles for design. ISO Standard 13850. 2015.

[7]     Functional safety of electrical/​electronic/​programmable elec­tron­ic safety-​related sys­tems. 7 parts. IEC Standard 61508. Edition 2. 2010.

[8]     S. Jocelyn, J. Baudoin, Y. Chinniah, and P. Charpentier, “Feasibility study and uncer­tain­ties in the val­id­a­tion of an exist­ing safety-​related con­trol cir­cuit with the ISO 13849 – 1:2006 design stand­ard,” Reliab. Eng. Syst. Saf., vol. 121, pp. 104 – 112, Jan. 2014.

[9]    Guidance on the applic­a­tion of ISO 13849 – 1 and IEC 62061 in the design of safety-​related con­trol sys­tems for machinery. IEC Technical Report TR 62061 – 1. 2010.

[10]     Safety of machinery – Functional safety of safety-​related elec­tric­al, elec­tron­ic and pro­gram­mable elec­tron­ic con­trol sys­tems. IEC Standard 62061. 2005.

[11]    Guidance on the applic­a­tion of ISO 13849 – 1 and IEC 62061 in the design of safety-​related con­trol sys­tems for machinery. IEC Technical Report 62061 – 1. 2010.

[12]    D. S. G. Nix, Y. Chinniah, F. Dosio, M. Fessler, F. Eng, and F. Schrever, “Linking Risk and Reliability — Mapping the out­put of risk assess­ment tools to func­tion­al safety require­ments for safety related con­trol sys­tems,” 2015.

[13]    Safety of machinery. Safety related parts of con­trol sys­tems. General prin­ciples for design. CEN Standard EN 954 – 1. 1996.

[14]   Functional safety of electrical/​electronic/​programmable elec­tron­ic safety-​related sys­tems – Part 2: Requirements for electrical/​electronic/​programmable elec­tron­ic safety-​related sys­tems. IEC Standard 61508 – 2. 2010.

[15]     Reliability Prediction of Electronic Equipment. Military Handbook MIL-​HDBK-​217F. 1991.

[16]     “IFA – Practical aids: Software-​Assistent SISTEMA: Safety Integrity – Software Tool for the Evaluation of Machine Applications”, Dguv​.de, 2017. [Online]. Available: http://​www​.dguv​.de/​i​f​a​/​p​r​a​x​i​s​h​i​l​f​e​n​/​p​r​a​c​t​i​c​a​l​-​s​o​l​u​t​i​o​n​s​-​m​a​c​h​i​n​e​-​s​a​f​e​t​y​/​s​o​f​t​w​a​r​e​-​s​i​s​t​e​m​a​/​i​n​d​e​x​.​jsp. [Accessed: 30- Jan- 2017].

[17]      “fail­ure mode”, 192−03−17, International Electrotechnical Vocabulary. IEC International Electrotechnical Commission, Geneva, 2015.

[18]      M. Gentile and A. E. Summers, “Common Cause Failure: How Do You Manage Them?,” Process Saf. Prog., vol. 25, no. 4, pp. 331 – 338, 2006.

[19]     Out of Control — Why con­trol sys­tems go wrong and how to pre­vent fail­ure, 2nd ed. Richmond, Surrey, UK: HSE Health and Safety Executive, 2003.

[20]     Safeguarding of Machinery. 3rd Edition. CSA Standard Z432. 2016.

[21]     O. Reg. 851, INDUSTRIAL ESTABLISHMENTS. Ontario, Canada, 1990.

[22]     “Field-​programmable gate array”, En​.wiki​pe​dia​.org, 2017. [Online]. Available: https://​en​.wiki​pe​dia​.org/​w​i​k​i​/​F​i​e​l​d​-​p​r​o​g​r​a​m​m​a​b​l​e​_​g​a​t​e​_​a​r​ray. [Accessed: 16-​Jun-​2017].

[23]     Analysis tech­niques for sys­tem reli­ab­il­ity – Procedure for fail­ure mode and effects ana­lys­is (FMEA). 2nd Ed. IEC Standard 60812. 2006.

[24]     “Failure mode and effects ana­lys­is”, En​.wiki​pe​dia​.org, 2017. [Online]. Available: https://​en​.wiki​pe​dia​.org/​w​i​k​i​/​F​a​i​l​u​r​e​_​m​o​d​e​_​a​n​d​_​e​f​f​e​c​t​s​_​a​n​a​l​y​sis. [Accessed: 16-​Jun-​2017].

Series NavigationISO 13849 – 1 Analysis — Part 1: Start with Risk Assessment”>ISO 13849 – 1 Analysis — Part 1: Start with Risk Assessment

Author: Doug Nix

+DougNix is Managing Director and Principal Consultant at Compliance InSight Consulting, Inc. ( in Kitchener, Ontario, and is Lead Author and Managing Editor of the Machinery Safety 101 blog.

Doug's work includes teaching machinery risk assessment techniques privately and through Conestoga College Institute of Technology and Advanced Learning in Kitchener, Ontario, as well as providing technical services and training programs to clients related to risk assessment, industrial machinery safety, safety-related control system integration and reliability, laser safety and regulatory conformity.

Follow me on