How to do a 13849–1 analysis: Complete Reference List

This entry is part 8 of 9 in the series How to do a 13849–1 analy­sis

An old book lying open with round eyeglasses lying on top.As promised in pre­vi­ous posts, here is the com­plete ref­er­ence list for the series “How to do a 13849–1 analy­sis”! If you have any addi­tion­al resources you think read­ers would find help­ful, please add them in the com­ments.

Book List

Here are some books that I think you may find help­ful on this jour­ney:

[0]     B. Main, Risk Assess­ment: Basics and Bench­marks, 1st ed. Ann Arbor, MI USA: DSE, 2004.

[0.1]  D. Smith and K. Simp­son, Safe­ty crit­i­cal sys­tems hand­book. Ams­ter­dam: Else­vier/But­ter­worth-Heine­mann, 2011.

[0.2]  Elec­tro­mag­net­ic Com­pat­i­bil­i­ty for Func­tion­al Safe­ty, 1st ed. Steve­nage, UK: The Insti­tu­tion of Engi­neer­ing and Tech­nol­o­gy, 2008.

[0.3]  Overview of tech­niques and mea­sures relat­ed to EMC for Func­tion­al Safe­ty, 1st ed. Steve­nage, UK: Overview of tech­niques and mea­sures relat­ed to EMC for Func­tion­al Safe­ty, 2013.

References

Note: This ref­er­ence list starts in Part 1 of the series, so “miss­ing” ref­er­ences may show in oth­er parts of the series. Includ­ed in the last post of the series is the com­plete ref­er­ence list.

[1]     Safe­ty of machin­ery — Safe­ty-relat­ed parts of con­trol sys­tems — Part 1: Gen­er­al prin­ci­ples for design. 3rd Edi­tion. ISO Stan­dard 13849–1. 2015.

[2]     Safe­ty of machin­ery — Safe­ty-relat­ed parts of con­trol sys­tems — Part 2: Val­i­da­tion. 2nd Edi­tion. ISO Stan­dard 13849–2. 2012.

[3]      Safe­ty of machin­ery — Gen­er­al prin­ci­ples for design — Risk assess­ment and risk reduc­tion. ISO Stan­dard 12100. 2010.

[4]     Safe­guard­ing of Machin­ery. 2nd Edi­tion. CSA Stan­dard Z432. 2004.

[5]     Risk Assess­ment and Risk Reduc­tion- A Guide­line to Esti­mate, Eval­u­ate and Reduce Risks Asso­ci­at­ed with Machine Tools. ANSI Tech­ni­cal Report B11.TR3. 2000.

[6]    Safe­ty of machin­ery — Emer­gency stop func­tion — Prin­ci­ples for design. ISO Stan­dard 13850. 2015.

[7]     Func­tion­al safe­ty of electrical/electronic/programmable elec­tron­ic safe­ty-relat­ed sys­tems. 7 parts. IEC Stan­dard 61508. Edi­tion 2. 2010.

[8]     S. Joce­lyn, J. Bau­doin, Y. Chin­ni­ah, and P. Char­p­en­tier, “Fea­si­bil­i­ty study and uncer­tain­ties in the val­i­da­tion of an exist­ing safe­ty-relat­ed con­trol cir­cuit with the ISO 13849–1:2006 design stan­dard,” Reliab. Eng. Syst. Saf., vol. 121, pp. 104–112, Jan. 2014.

[9]    Guid­ance on the appli­ca­tion of ISO 13849–1 and IEC 62061 in the design of safe­ty-relat­ed con­trol sys­tems for machin­ery. IEC Tech­ni­cal Report TR 62061–1. 2010.

[10]     Safe­ty of machin­ery — Func­tion­al safe­ty of safe­ty-relat­ed elec­tri­cal, elec­tron­ic and pro­gram­ma­ble elec­tron­ic con­trol sys­tems. IEC Stan­dard 62061. 2005.

[11]    Guid­ance on the appli­ca­tion of ISO 13849–1 and IEC 62061 in the design of safe­ty-relat­ed con­trol sys­tems for machin­ery. IEC Tech­ni­cal Report 62061–1. 2010.

[12]    D. S. G. Nix, Y. Chin­ni­ah, F. Dosio, M. Fessler, F. Eng, and F. Schr­ev­er, “Link­ing Risk and Reliability—Mapping the out­put of risk assess­ment tools to func­tion­al safe­ty require­ments for safe­ty relat­ed con­trol sys­tems,” 2015.

[13]    Safe­ty of machin­ery. Safe­ty relat­ed parts of con­trol sys­tems. Gen­er­al prin­ci­ples for design. CEN Stan­dard EN 954–1. 1996.

[14]   Func­tion­al safe­ty of electrical/electronic/programmable elec­tron­ic safe­ty-relat­ed sys­tems — Part 2: Require­ments for electrical/electronic/programmable elec­tron­ic safe­ty-relat­ed sys­tems. IEC Stan­dard 61508–2. 2010.

[15]     Reli­a­bil­i­ty Pre­dic­tion of Elec­tron­ic Equip­ment. Mil­i­tary Hand­book MIL-HDBK-217F. 1991.

[16]     “IFA — Prac­ti­cal aids: Soft­ware-Assis­tent SISTEMA: Safe­ty Integri­ty — Soft­ware Tool for the Eval­u­a­tion of Machine Appli­ca­tions”, Dguv.de, 2017. [Online]. Avail­able: http://www.dguv.de/ifa/praxishilfen/practical-solutions-machine-safety/software-sistema/index.jsp. [Accessed: 30- Jan- 2017].

[17]      “fail­ure mode”, 192–03-17, Inter­na­tion­al Elec­trotech­ni­cal Vocab­u­lary. IEC Inter­na­tion­al Elec­trotech­ni­cal Com­mis­sion, Gene­va, 2015.

[18]      M. Gen­tile and A. E. Sum­mers, “Com­mon Cause Fail­ure: How Do You Man­age Them?,” Process Saf. Prog., vol. 25, no. 4, pp. 331–338, 2006.

[19]     Out of Control—Why con­trol sys­tems go wrong and how to pre­vent fail­ure, 2nd ed. Rich­mond, Sur­rey, UK: HSE Health and Safe­ty Exec­u­tive, 2003.

[20]     Safe­guard­ing of Machin­ery. 3rd Edi­tion. CSA Stan­dard Z432. 2016.

[21]     O. Reg. 851, INDUSTRIAL ESTABLISHMENTS. Ontario, Cana­da, 1990.

[22]     “Field-pro­gram­ma­ble gate array”, En.wikipedia.org, 2017. [Online]. Avail­able: https://en.wikipedia.org/wiki/Field-programmable_gate_array. [Accessed: 16-Jun-2017].

[23]     Analy­sis tech­niques for sys­tem reli­a­bil­i­ty – Pro­ce­dure for fail­ure mode and effects analy­sis (FMEA). 2nd Ed. IEC Stan­dard 60812. 2006.

[24]     “Fail­ure mode and effects analy­sis”, En.wikipedia.org, 2017. [Online]. Avail­able: https://en.wikipedia.org/wiki/Failure_mode_and_effects_analysis. [Accessed: 16-Jun-2017].

Series Nav­i­ga­tionISO 13849–1 Analy­sis — Part 7: Safe­ty-Relat­ed Soft­ware”>ISO 13849–1 Analy­sis — Part 7: Safe­ty-Relat­ed Soft­wareISO 13849–1 Analy­sis — Part 8: Fault Exclu­sion”>ISO 13849–1 Analy­sis — Part 8: Fault Exclu­sion

Author: Doug Nix

Doug Nix is Managing Director and Principal Consultant at Compliance InSight Consulting, Inc. (http://www.complianceinsight.ca) in Kitchener, Ontario, and is Lead Author and Senior Editor of the Machinery Safety 101 blog. Doug's work includes teaching machinery risk assessment techniques privately and through Conestoga College Institute of Technology and Advanced Learning in Kitchener, Ontario, as well as providing technical services and training programs to clients related to risk assessment, industrial machinery safety, safety-related control system integration and reliability, laser safety and regulatory conformity. For more see Doug's LinkedIn profile.